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"l=ne non-linear kinetic equation describing the evolution of the orientational stru~m'al of nematic Hquid crystals is investigated. 
The equih'brium structares are described and their stability and the behaviour of the solutions for long times are investigated. 
The super-slow evolution (for example, in a very intense magnetic field) of the irregular structure to a regular stable structure 
is described. © 1997 El'zevier Science Ltd. All r io t s  reserved. 

1. FORMULATION OF THE PROBLEM 

Continuing our investigations of extremely non-linear equations of the theory of the elasticity of nematic 
liquid crystals (ND~.) [1-3], we will consider the non-linear evolution in a magnetic field of the deformed 
orientational structure containing, moreover, a large number of ~t-walls, and kinks while preserving the 
overall topologicalt charge. The orientational structure of the NLC becomes particularly unstable in 
regions of large dimensions, and also in weak magnetic fields. 

The equations of the theory of the elasticity of NLC express the balance of moments related to the 
rotation of the local anisotropy (director) vector l(x,y, z) due to the action of an external magnetic field 
H and neighbouring parts of the medium. The equilibrium equations were first obtained from the 
variational principle [4, 5] 

8F=0,  12= 1 

F = I s  K, K2(lrot i) 2 -xikHink]dv (1.1) [ (divl) 2 + + K311x rotll 2 
2v 

Here F is the Oseen-Frank elastic energy. The value of Fvaries over the gradients of the local vector 
V1 while the length of the latter remains unchanged. The coefficients K1, K2 and K 3 characterize the 
transverse bending (K1), the longitudinal bending (K3) and the twisting (K2) of the vector lines of the 
field l(x,y,z). The diamagnetic tensor X/t = X±Sa~ + (Xll - z±)l//t has two components--the longitudinal 
susceptibility (ZI I) and the transverse susceptibility (Zx) of the NLC. 

We will consider the case of the bending of an orientational structure when the two-dimensional vectors 
I and H lie in the same (x, y) plane at all instants of time t. Then ! rot I = 0 and no twisting of the 
structure occurs. By considering the non-equilibrium case, in the moment-balance equation, a term 
proportional to the velocity of rotation of the director I is usually added, which is responsible for 
rotational friction. It then takes the form 

i x [K t grad div I - K 3 rot rot ! + zaH(IH)] = Y I x l, Xa = Z, - X± (1.2) 

The variational fbrm of the kinetic equation will be considered in Section 4. Here Xa is the diamagnetic 
anisotropy and 7is l~e rotational viscosity. Strictly speaking, the inertial term - I, related to the molecular 
moments of inertia, and also the hydrodynamic term - rot v, can be omitted since they are unimportant 
for large dimensions of the region S. 

Equation (1.2) is extremely non-linear, so its general analysis is difficult. In the one-dimensional case 
i = l(y, t) for a constant magnetic field it can be represented in the form of an equation in a single 
scalar function a---the angle of mutual orientation of the vectors ! and H. We then have 

2?(x = 2K, a'y;,- z,,H 2 sin 2 a -  2AK[(aD 2 sin 2 a -  ot;~ sin 2 a] (1.3) 
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a = arccos(IH)H -I, H = const, AK =/('3 - K1 

The evolution equation can be analysed in this form. It was investigated in the linearized form 
previously in [1]. 

We will refine the problem. In the case of an infinitely extended region we will consider only solutions 
that are periodic in y with period h. If the region S is a plane-parallel layer 0 ~< y <~ h, Eq. (1.3) 
corresponds to the case when the field is orthogonal to its boundaries. We will specify the orientation 
of the vector ! on its boundaries so that it is orthogonal to the magnetic-field vector H 

a (O , t )=T f f2 ,  a ( h , t ) = n l 2  + N x ,  N = O ,  1,2 .... (1.4) 

2. E Q U I L I B R I U M  STABLE AND METASTABLE 
O R I E N T A T I O N A L  S T R U C T U R E S  ( F I E L D S )  

We will begin with a description of equilibrium structures. For equilibrium states (ct = 0) the evolution 
equation (1.3) becomes an equation describing the static orientational deformations of the NI.X2 
structure, which arises due to the action of the walls and magnetic field 

(1 • 2 , ,  , )2 - p s m  oOCty).-[p(cty +m2]s inacosa=O 

p = 1 - K i / K 3, m 2 = H2ZaK31 

The first integral of this equation is well known 

Og v =+( m2 s in2  ¢x-C ) )~ 

(2.1) 

(2.2) 

(C is the constant of integration). Equation (2.2) has two families of solutions. When C > 0 the solutions 
describe states without preliminary deformationmwhen there is no magnetic field we have ¢t = const. 
The case C < 0 covers the presence of a non-uniform field and also as H ~ 0, i.e. due to the boundary 
conditions, dissimilar orientation on the boundaries. In the first case the deformations begin from zero 
only as a result of bifurcation when a certain threshold is reached. 

It is clear that, in the first case, which we will now consider, on the boundaries y = 0 and y = h the 
same values of the angle tx or of the complementary angle 13 = ~ 2  - (x must be specified 

a ( 0 )  = a ( h )  = n / 2  o r  [~(0) = [3(h) = 0 ( 2 . 3 )  

The solution of Eq. (2.2) is expressed in terms of an elliptic integral of the third kind [6] 

h - y  = m-J~](l - p)(1 - n ) l - l ( n , k , z ) ,  n = k 2 p  

(2.4) 
k -2 =l+(l-p)tg2CXm, sincx m = C I m  2, ¢x m =mincz 

1 c o s  ¢x k -I (1 - p)-)~ sin [3 

s i n z = k  l ~ - p  41+(K 3 / K  I)pcos 2(x =3/1+(K 3 / K  t)psin 2 

The parameter k, related to the constant of integration, represents the "amplitude" of the deformation 
(Xm, where am is the minimum angle (between the vectors H and !), reached in the middle of the layer 
y = h/2, corresponding to the greatest deformation. The value of the related "amplitude" of the 
deformation is found from the dispersion equation 

hm I ~]1 - p = 2 14i-~-nn(n,k), H(n,k) = H ( n , k , n  12)  (2.5) 

It follows from boundary condition (2.3) wheny = 0. 
In this equation k occurs as the unique arbitrary constant of integration. The parameters m and p 

are expressed solely in terms of the characteristics of the medium, the magnetic field H and the layer 
thickness h. 
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It is significant that Eq. (2.5) does not have a solution for all k. By virtue of the properties of 
the complete ellipllie integral of the third kind II(n, k) we have II(n, 0) = r42, II(n, k) ~> H(n, 0). Using 
this inequality in (2.5) and taking into account the fact that n = 0 when k = 0, we initially obtain the 
inequality 

hm >- n l~--p- p, m 2 2 -I = H ~aK3 

After elementaly algebra, taking into account the fact that ~ , / (3  and p are positive quantities, we 
can write 

Hh >~ ttc, ttc =n~/K.~'X~(I- P) (2.6) 

This inequality denotes that a non-trivial solution is obtained (deformations occur) if the product 
Hh reaches and exceeds the threshold ~ .  

Equation (2.5) corresponds to the special case when the maximum value of the angle 13 is reached 
oncewin the middle of the layer, in the interval 0 ~< y ~< h. The boundary conditions (2.3) will obviously 
be satisfied if, for ~ r o  values at the ends, their value is reached inside the interval an integer number 
of times: i.e. the section h/N corresponds to the interval 0 ~< Z ~< n/2, where N = 1, 2, 3, . . . .  The value 
N = 1 corresponds to condition (2.5). It can be written in general form as 

hm=(2N l~S-n-n l~-p)II(n,k) (2.7) 

For fixed values ofm andp we obtain a series of monotonically increasing curves of II(n, k) = Nx/2 
(for different values of N). The dispersion equation (2.5) defines N values of k~, to which correspond 
N solutions of Eq. (2.2), satisfying the zero boundary conditions (2.3). 

To estimate the gradient properties of these solutions we start from the expression for the first integral 
(2.2), in which we must take into account the representation of the constant C in terms of 0~n, according 
to (2.5). The angular gradient takes its greatest value (in absolute value) at the ends of the sections 
YN = 0, h/N, where a = g/2. From (2.2) we obtain 

max(ot~.)e = Nero2 c°s2 ¢tm _ N2m2 _ Nem2k2 
h e ( l _ p  ) - he(k~2 _p,) - (I - n ) h  2 (2.8) 

It is clear that large values of the gradients correspond to large values of the numbers k~v. It can be 
seen that k~v is a decreasing sequence. The greatest value of kl is found from Eq. (2.5), and it is greater 
the greater the value of the product/-/h compared with the threshold ~ .  Hence, the spectrum of the 
numbers k~ occupies a strip from 0 to kl. 

The explicit dependence a(y) or 13(y) can be determined for limiting values of the parameters k and 
n = kep. For small k andp, taking n = 0, we obtain 

4 1 - p  ~ / l - p  
h - y = H(0, k, Z) = F(k, Z) (2.9) 

m m 

where F is an elliptic integral of the second kind, for which there is the inversion formula 

sin Z = s n I ~ _ p ( h - y ) ,  k] (2.10) 

Using (2.4), by putting n = 0 in it, we can change to the angle a or 6, which gives the final 
relation 

 oso 

3/1 +(/(3 / K! )pcos 2 a 
(2.11) 

Forp  = 0 (when n = 0 irrespective of k) this formula, and also (2.10), become exact for any k. 
For k = 1 the elliptic sine changes to a hyperbolic tangent, and we arrive at a regular system of kinks 
(x-walls), concentrated around points with coordinatesyt = O, h/N, 2h/N, . . . .  We have 
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formulae 

13 S=2arctg ( Y - Y t )  - ~ + s ~ ,  s = + l  (ZI2) 

The profile of a kink in general is given by the formula 

= 8,(~) ,  ~ = m(y  - Yl) I ~ (2.13) 

To construct asymptotic solutions describing the interaction of the kinks, we require the following 

B s (~) = sn - sp(p)e  -~ + O(e -2~), ~ ~ +oo (2.14) 

which describe the asymptotic properties of a kink. Here s is the topological charge. 

3. T H E  S T A B I L I T Y  O F  T H E  E Q U I L I B R I U M  S O L U T I O N S  

We will investigate the kinetic equation (1.3), linearized in the region of the equilibrium solutions 
(n is the number of a solution). 

Suppose ct = oh + ¥, where ¥ is a small quantity. Equation (1.3) can then be written in the form 

Tl~lt=An¥, TI = T / K I  

m,~ = V~,~, (1 - p sin 2 a ,  ) - 2V~.p(ct, )~, sin a .  cos ct. - 

-~/{2psin ~n coso~n(a.);,;. +[p(C~.); ? + m2]cos2~n} 

(3.1) 

The following result (previously known for p = 0) is important when using the theory of regular 
attractors [7] in the problem in question. Since the attractor describes the behaviour of the solutions 
of the kinetic equation as t -~ +** this enables the physically realizable limiting regimes to be described 
at long times. 

Lemma. For the Dirichlet conditions for "almost all" values of the parameter m (with the exception 
of a denumerable set), all the equilibrium solutions oh(y) are hyperbolic, i.e. the operator An has an 
empty kernel. 

For periodic conditions the kernelAn consists only of the function (oh)'r 

Note.  This  denotes that the equilibrium solutions almost always give non-degenerate extrema of the 
system energy, i.e. non-degenerate maxima, minima or saddle points. 

Proof. We will use the well-known scheme in [8]. For the Dirichlet case, we can verify by direct 
substitution that the function 

2m2O°~,t (Y, m2 ) / c)( m2 ) - Y(~n )~ = ~l/ (3.2) 

satisfies the equalities AnV - 0, ~(0) = 0. But we see from (2.2) that for "almost all" m the second 
condition ¥(h) = 0 is not satisfied, which it was also required to prove. The assertion is well-known for 
periodic conditions [9]. 

For the case of the Dirichlet boundary conditions (1.4) all the non-trivial non-constant solutions for 
which (oh)'y has more than one root, are unstable, i.e. an cigenvalue q > 0 exists for the problemAn¥ 
= q~ and correspondingly solutions ¥0', t) (3.1) that increase exponentially with time. 

The proof is carried out using the well-known scheme in [9, p. 138, 139]. 



Non-linear orientational deformations in nematic liquid crystals 467 

4. SOME G E N E R A L  P R O P E R T I E S  OF THE KINETIC EQUATION AND 
THE R E L A X A T I O N  OF A N O N - E Q U I L I B R I U M  S T R U C T U R E  

For systems of limited dimensions h when the non-linearities m2sin2[3 are "not too large", the descrip- 
tion of the behaviour of the solutions of Eq. (1.3) follows directly from the theorem on attractors of 
gradient-like dynm~ical systems [7-11]. Equation (1.3) with boundary conditions (1.5) or (2.4) can in 
fact be represented in the functional form 

8D / 813: = -SL / 513 (4.1) 

where the functionals of "dissipation" D and "energy" L have the form (we have changed from the 
angle ¢x to the angle 13) 

It follows from (.4.1) that L is a Lyapunov functional which does not increase along the trajectory of 
the dynamical system 

D = --0L / 0t (4.3) 

Moreover L ~> O. 
These properties and the lemma proved above enable the general theory [7-11] to be employed. 
All the trajectories of the dynamica l  system converge to equilibria, where, for "almost all" (see [9]) 

of the initial data ~;(y, 0) the corresponding trajectory 13(y, t) approaches a certain stable equilibrium 
a s  t ---) -I- oo. 

This stable equilibrium is unique for the case of the Dirichlet conditions (1.4) with N ~ 0. For (2.3), 
if the magnetic field is below the threshold, this is a trivial solution for [~ - 0, c~ = x/2. If the field is 
above the threshold, this half-wave is a non-trivial solution of (2.2) with C > 0 and the least period. 

There are exactly two such half-waves corresponding to different signs in front of t he root in (2.2). 
If we consider condition (1.4) with N ~ 0, a certain monotonic solution with C < 0 will be an equilibrium 
solution. 

For periodic boundary conditions, "almost all" trajectories will converge at an exponential rate to 
the trivial equilibria 13n - nn (n = 0, +1, -+2,...). The relaxation time for this process of approaching 
equilibrium can be ¢~timated using (4.3). We will assume that the solution 13 is attracted to the equih'brium 
13n. We will select small neighbourhoods Vn of the equilibrium solutions 13n such that in Vn Eq. (1.3) can 
be linearized. Inside Vn we then have (see Section 3) 

h 

Ilwll 2 = I v 2 dy, Ilw(t)ll Ilw(to )llexp[-kn (t - t o )], t >~ t o 
0 

Here ~ is the least positive eigenvalue An. 
Thus, the relaxation time inside Vn is proportional t o  ~.n¥1-1. The instant to of falling inside Vn can be 

estimated from relation (4.3) 

to 
S/~[3(s)lds = L[~(0)]- L[13(t 0)]~</.v = L[[$(0)] 
0 

Since we have D ~> 8 > 0 outside Vn, this gives 

t0~<Lo8 -z =L[[3(0)] (min D[~]) -I, [~Vn, n=0,:t:l,+2 ..... 

According to this method of estimating the relaxation time for limited h and m -1, the solution for 
the initial data of the; "common position" after a limited time to, (~ ,  m, h) falls in a small neighbourhood 
of Vn of a certain equilibrium (they are all described in Section 2). 

This analysis is insufficient, however, when the dimensionless parameter e = (mh)-I is small. Long- 
lived structures made up of kinks then occur which relax, in the final analysis, to equilibrium solutions, 
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as described above. Here the relaxation time becomes exponentially long, In x = 0(mh). Hence, in the 
case of a small parameter the attractor analysis (1_3) has to be supplemented, since it is sometime difficult 
to detect a slow evolution by numerical methods. However, an asymptotic analysis is poss~le, carried 
out below in Sections 5 and 6, which describes both the occurrence of a kink structure from certain 
natural initial states and its slow evolution. 

We obtain below a formula for the relaxation time x = "¢(m,p, h), which gives its explicit dependence 
on the problem parameters. Here it turns out that the unstable equih'bria solutions (1.3) with a large 
number of extrema (i.e. with a period d ~ h for large h) decay much more rapidly than the solution 
with a small number of extrema, when d = O(h), and that the latter correspond to the special case of 
irregular kink structures. A similar pattern is obtained when h - 1, but for large characteristic scales 
m q, since the conversion of the spatial scale converts these situations into one another. 

5. THE THEORY OF THE GROWTHS OF DEFECTS 
(THE FORMATION OF "WALLS") 

We will consider the process by which spatial gradients are localized with the formation of kinks, 
which arise from smooth orientational fields after a high magnetic field is switched on for (Hh ~ ~) .  
The latter can be the result of thermal fluctuations in an initially small field for a thicker layer, when 
the orientational structure is unstable. In a high field H the part played by thermal fluctuations may be 
fairly small and the evolution of the orientational field can be described by the equih~orium equation 
(1.3). 

We will show that with certain limitations on the initial data, the process by which a kink structure 
arises can be described analytically and the corresponding relaxation time can be obtained. 

We mean by a growth process the increase in the spatial gradient at the centre of the kink; i.e. the 
growth of a local twist in the structure. For ( 1 _3) the formal-asymptotic theory, like the simpler equations, 
has been investigated previously. We will therefore simply present the main results [12, 13]. 

The process can be described for "smooth" initial data 

~(y,O)=¥(Y), Y=Sy, 8 ,~1 (5.1) 

The same results are also obtained for given 0) of the form ~(Y) + Sl¥1(Y), I 1¥1 [ [ < C, where 
~1 is a small quahtity. 

We will write the asymptotic expansion in 

1~ = ~O(r, t) + ~2[~I(Y, t) + . . .  (5.2) 

where the principal term satisfies the equation 

yl~9~o/i3t = - m 2 s i n 2 ~ ,  ~lt=o = V(Y) 

while the corrections ~ ,  151 are found from the linear equations [13]. We have 

tg[30 = [tgw(Y)]exp(-2y~lm2t) 

Expansion (5.2) is correct for times of the order of "{:1 ~- t ~ T l - l h l  (~-1), and this is necessary for the 
defect to grow. Expansion (5.2) can be justified using comparison theorems [14]. 

In particular, this leads to the following conclusions. 
1. If the initial configuration of the twist ¥(Y) = [3(y, 0) from (4.1) lies in one of the open intervals 

In = [(n - 1/2)~] for integer n, no kinks (defects) can arise: if ¥(Y) ¢ In for all Y, we have lim [3(y, t) = 
n~, t --~ +00. 

2. If property I is not satisfied, the curve [3 = ¥(Y) will intersect one of the straight lines 13 = (n - 
1/2)z at least twice for certain n. The growth time is of the order of ¥(I1n(8 q)  and the kinks grow at 
points Yi where ¥(8yi) = (n - 1/2)x for certain n. 

It follows from these considerations that the structures investigated below in Section 6, may arise 
from smooth initial data. Generally speaking, for given ¥ of general form, a non-periodic (random) 
sequence of defects arises. 
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6. I N T E R A C T I O N  OF KINKS AND ANTIKINKS.  S U P E R S L O W  
RELAXATION OF N O N - E Q U I L I B R I U M  U N O R D E R E D  

S T R U C T U R E S  TO E Q U I L I B R I U M  S T R U C T U R E S  

As calculations t~om Section 5 show, a structure with sharp boundaries arises from the initially smooth 
structure; they era1 be described using kink profiles Bs(y--Yi) (see Section 2). Here the charge s = 4-1 
depends on the sign of the derivative 0[~/~y(y, 0) Ir---r~ of the initial given structure (for s = -1 we will 
call the solution/~ an antikink). Further evolution of the structure occurs, generally speaking, much 
less slowly than it occurred from the initial unordered state 13(y, 0) and can be described using kink 
interaction theory. 

This theory was initially developed by Ostrovoskii and his co-workers for non-dissipative media.t The 
mechanism by which soliton (kink) interaction forces occur is physically related to their interaction due 
to the exponentially falling "tails" (see formula (2.14)). 

The theory of t]he interaction of kink.~ (s = 1) and antikinks (s = -1) in a dissipative medium has 
also been developed [12, 15, 16]. It is a rigorous theory [15-16] for the case of the Ginzburg-Landau 
type equations 

U; = Uxx + a 2 ( u  - u  3) (6.1) 

In this ease, for large values of h, long-lived structures occur consisting of kink-antikink chains, where 
each kink (s = 1) is followed by an antikink (s = -1), and they are separated by "large" distances di. 
The quantity ~ = exp(--cad) is in fact the small parameter in the theory, since the interaction forces 
here are exponentially small and are attractive forces. 

The theory is correct so long as Z ,~ 1, i.e. so long as the kinks do not converge. We know from 
computational ext~eriments and also from other considerations [17], that if a kink and an ant'drink 
converge, they "amaihilate" one another and (in ease (6.1)) a locally almost constant section arises where 
u ~ l o r u  ~--1. 

The main difference between problem (1.3) and equations of the type (6.1) previously investigated 
is that here it is possible for kinks of the same charge to interact, when the closest neighbour of a kink 
is again a kink. This is due to the fact that the no-linearity is periodic in 13, so that after a step "upwards" 
from zero to ~r a step "upwards" from ~ to 2re may again follow. 

Such situations have not been considered. Below we propose a simple formally asymptotic method 
which enables the iaateraction of kinks with any succession of topological charges to be described. Note 
that the existing method [16] can only be applied to a regular sequence of unlike charges. 

For simplicity we will first consider the ease of periodic boundary conditions. 
Suppose we haw ~ . N = 2n kinks and antikinks with coordinates ql(t)  . . . . .  qN(t). We will assume that 

at the initial instant d = rain Iqi -q i+ l l  >> 1. The small parameter in the asymptotic form described 
below is the quantity g e x p ( - m d N ( 1  - p ) ) ,  and the system of equations which arises is correct so long 
as g ,~ 1. We will ~rmally assume, taking the periodicity into account, that q~+l = ql, q~ = q0. 

We introduce an auxiliary shear function 0(y) ~ C ", where the carrier 0(y) coincides with (-1, 1), 
0 ~< 0 ~< 1 and 0 increases monotonically. We will introduce neighbourhoods V/and IVi 

Vi(c  ) = {y: ly - ril ~ c}, Wi+ I = (r  i + c, ri+t - c) ,  ri = (qi + q i + J  2 (6.2)  

where c is a certain constant. We now introduce the ansatz 

= %[q( t ) ,  y] + ¢Pl[q(t), y] + . . . .  q = (ql ,  q2 . . . .  qN) 

~Bi[a(Y - qi)], 

~°° (q' Y) = [ B i [a(y - qi )](1 - 0 i ) + Bi+ I [a(y - qi+t )]0i, 

Bi(~)= B~i(~)+nin, a = m ( l - p )  -½ 

yeW/ 
y ~ v/ (6.3) 

where the correction ¢Pi is of the order of 2L The integer numbers el i define the asymptotic form of the 
kink as ~ --> **, and the numbers si = 4-1 are the topological charges. Although the ansatz (6.3) depends 

tGORSHKOV, I~ A and OSTROVSKII, L. A., Interaction of solitons in non-integrable systems. The direct perturbation 
method. Preprint No. 4'7, Inst. AppL Physics, Academy of Sciences of the U.S.S.R., Gor'kii, 1981. 
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on the choice of the shear function 0 and the constant c, as we will see below the resultant equations 
for qi( t )  are  independent of the choice of the function 0 and the constant c as d ~ **. 

Substituting (6.3) into (1.3) we obtain the following linear equation for the correction 

A(q)91 = R(~o,y,q,q) (6.4) 

An expression for R will be described below; A is a Schr6dinger-type linear operator with variable 
coefficients. These coefficients only vary appreciably in limited neighbourhoods qi, which are separated 
by considerable intervals, where A ~ (1 - p ) d 2 / d y  2 - m 2. 

Thus, we have N local potential wells separated by "large" distances. The spectrum of such operators 
is known [16]. Using simple estimates it can be shown [16] that there are N small eigenvalues of the 
order of k or less, while the remaining eigenvalues are negative and are separate from zero. Here the 
eigenfunctions corresponding to the N small values are linear combinations of the functions B[(y), 
concentrated in the neighbourhoods qi. Consequently, in order to ensure that the corrections qh axe 
small (O(k)) it is sufficient to satisfy the condition 

h 
(R, B:) = ~ R(q, iT, y)B:[a(y - qi)]dY = 0 (6.5) 

o 

for each i. The derivative B~ here and below is taken with respect to the argument ~ = a(y - qi). These 
equations also give a system of equations of the kink motion. 

To simplify the expression for R and to write in explicit form, we will represent R in the form R = 
S+Q. The contribution of S is concentrated around the coordinates qi in the regions tVi and decays 
exponentially with distance from qi. Up to terms O(k) we have 

N dqj 
S = aTi 5". B~ (6.6) 

j=~ dt  

Conversely, the contribution of Q is non-zero only in neighbourhoods V/. We have 

N 
Q= Y. Qj +O(~.), suppQj = vj (6.7) 

j=l  

Qj = p(p)(I - p){sj (Q~'- 2aQ~) exp[a(qj - y)] + 

+s j+ I (Qy+ 2aQ~ ) exp[a(y - qj+l )] (6.8) 

The function p = p(p) was defined in (2.14). 
We will now simplify conditions (6.5) and obtain an exph'cit system for qi(t). We will first calculate (s, 

B:). The contribution of all terms in (6.6), apart from the term i = j, is of the order of ~, or less. Thus, 
we have (the integral is evaluated using the well-known scheme described in [12]) 

dqi ~ d~ + O(L Q = TI -~t  (S, B;)=T1 "~'t [_~ (B'(~))2 dqi tp-~  a r c s i n ~  +O(L)] (6.9) 

When calculating (Q, Bi3 only the termsj = i - 1 andj = i are important. This means physically that 
each kink interacts only with neighbouring kinks. 

Taking into account the fact that the carrier 04 lies in the region Vj, we can replace the function B'/ 
by its asymptotic form (the exponential tail). Then, we have from (6.6) and (6.7) 

B "= s j p ( p ) e x p [ - T - a ( y  - qi )] 

where the minus sign corresponds to the region V/, while the pins sign corresponds to the region V/_I. 
Integrating by parts, taking the properties of Z(Y) into account, we have 

Jj = ~ QjB~dy = +2ap2(p)(1 - p)sis j exp[-alqi - qjl], j = i , i -  1 
vj 

where the plus sign is taken forj  = i and the minus sign is taken forj = i - 1. 
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We finally have the following system of equations (apart from corrections that vanish as ~, -~ 0) 

Tl  C ( p ) d q i  / all = 2ap 2 (1 - p ) s i [ s i +  1 exp(a(qi - qi+l ) )  - s i - I  exp(a(qi-J - qi  ))]  (6.10) 

Each of these eatuations resembles the classical equation of a Tod chain except that the first derivative 
is on the left. For a kink-antikink chain, when si = --si+l always, it converts into the well-known equations 
obtained previously [16]. 

Equations (6.10) have a dissipative form, which follows directly from the possibility of writing 
them in a form artalogous to (4.1) (Dis the dissipation and L is the energy) 

2 ~=, ~,-d-/t,) ' 

(we recall that_s~v+1 = sl, qlv+1 = qO- 

N 
E = p 2 a ( l  - p )  ~., sisi+ 1 e x p [ a ( q  i - qi+l )] 

i=1 

(6.11) 

The energyL decreases along the trajectories (6.10). Hence it follows that kinks of the same charge 
tend to recede from one another while those of different charge converge.,Hence, there is an analogy 
with ordinary charges. Formally (6.10) and (6.11), which give the asymptotic energy of the system of 
kinks and their evolution, are correct so long as d = nlln]q i -qi+ll ~ 1. 

The analysis of Eqs (6.10) is analogous to that carded out earlier for other cases [16]. For periodic 
boundary conditions the total charge of the system of kinks is zero. System (6.10) can have equilibrium 
states consisting of chains of kinks of different charges. As in the case of (6.1), they are all unstable. 
The decay of these unstable structures occurs as follows. In the case of the "common position" there 
are always two kinks of different charges (signs), closest to one another. Since the interaction force is 
exponential, one of the exponential functions in (6.10) is much greater than all the remaining ones. 
The kinks thereby converge in a time of the order of exp(ad), where d is their initial distance apart. 

This is a very slow process. Since only a~ becomes a quantity of the order of unity, the process of kink 
collision is speeded up, and it can be modelled on a computer (here it is clear that the remaining kinks 
have no effect on this collision). 

We know [ 17] that the result will be the annihilation of two kinks and the occurrence of a new system 
of defects with zer_.o total charge, but a smaller number of kinks. This continues until, after a time of 
the order of exp(a~), all the kinks are annihilated and a defect-free state occurs (for the case of periodic 
conditions). It carl be seen that this conclusion agrees with the general theory outlined in Section 4. 

This approach can be extended to the Dirichlet condition (2.3). 
The formally as3qnptotic approach described here can also be used in the case of conditions (1.4). 

In order to satisfy these conditions it is sufficient to introduce two boundary layers with the help of 
two kinks Bs[a(y -Y0)], B,l[a(y -Yl)], wherey0 andyl are chosen so as to satisfy the following boundary 
conditions 

Bso(-ayo) = Wo, Bsl[a(h- Yl)] = WI 

(we recall that we have changed to the angle 6, ¥0 = [~(0), ¥ 1  = ~ ( h ) ) .  
As a result, a chain of kinks arises where the two extreme kinks are attached. Here it is appropriate 

to introduce a non-integer defect charge. Thus, for "internal" kinks we assume s = _+ 1, as above, while 
for boundary kinks we find s using the relations 

sO = (¥o - non)/n, sl = (n,It- ¥i)/~ 

The charge is then conserved when readjustment of the structure occurs. These readjustments m o u n t  
of the fact, as a result of collisions between kinks of different charge, a structure slowly arises (expon- 
entially slowly) consisting of the least number of kinks having the same total charge as the initial 
configuration. 

An important difference between this and the case of periodic conditions is the possibility of stable 
structures of kink.,; (of two boundary kinks in case (2.3)). 

For the case of conditions (1.4) a "short ladder" of kinks of the same charge occurs. We recall that, 
according to Section 6, after the initial period of kink growth, No kinks occur, where No is the number 
of intersections between ~ = ¥(Y) and the straight lines 13 = (n - 1/2)1t. If this number is greater than 
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N from (1.4), then after initial growth an exponentially prolonged readjustment of  the structure 
will begin leading to a structure consisting of the least number of kinks, ensuring a total charge of N 
(N = 0 for conditions (2.3)). 

7. C O N C L U S I O N  

Thus, we have described the evolution of an initially weakly non-uniform structure to a stable 
equilibrium structure for the non-linear kinetic equation (1.3). This evolution occurs in two stages. The 
first is a comparatively rapid stage and is accompanied by a growth of local gradients and concludes 
with the formation, generally speaking, of an irregular structure of kinks (described by the ansatz from 
Section 6, Eqs (6.3)). 

The relaxation time corresponding to this stage is described by the formula 

,t z - c y {  z ln( m m i n i l ~ . ( y i ,  O )l ) 

Kinks and antikinks can be formed at points where the curve 13 = [3(y, 0), which gives the initial data, 
intersects the straight lines 13 = (n - 1/2)x, n = 0, ---1, _ 2 , . . . .  

However, everything depends on the values of  the parameter  ea = (rod) -1, where d = mind qi - qi+l 1. 
If this parameter  is small (the field strength H is high or d is large) and there are points of  intersection 
Yi, further evolution occurs over an exponentially long period, since the equilibrium state is connected 
with a very high energy level. In this ease the superslow evolution mentioned reduces to convergence 
of  kinks of different charge s and their mutual annihilation until a stable regular structure occurs. 

This structure here is either two boundary kinks plus a trivial solution (see (2.3)), or  a small ladder 
of kinks or simply a trivial solution. Note that numerical methods may be ineffective for small ed in 
view of the huge value of x2 (this superslow evolution may not be noticed in a numerical experiment). 

We note an analogy with electromagnetism, namely, the overall topological charge is conserved in 
the evolution described. 

The corresponding relaxation time x2 is given by the formula In x2 = O(nut),  where a~ is the 
characteristic distance between kinks. 

If ed is not small (the field strength H is dose  to the threshold), there is practically no second stage 
and, according to Section 4, a stable equilibrium structure (described in Sections 2 and 3) is immediately 
formed comparatively rapidly. In this case the usual numerical methods are effective. 

A similar analysis can also be carried out In the two-dimensional case, which is extremely important, 
since there are then no simple foreseeable formulae for the equilibrium solutions. 

This research was carded out with financial support from the Russian Foundation for Basic Research 
(96-01-01150). 
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